infection
day2 Tasks
English (ISC)

Tree Infection

You are given a rooted tree consisting of N vertices, along with integers R and M. The vertices are numbered from 1 to N, with vertex 1 as a root. Each of the other vertices has a single parent in the tree.

If a vertex s is chosen, it becomes infected along with all its descendants (i.e. vertices that can be reached by following edges downward from s) at a distance of R or less, where distance is calculated as the number of edges between vertices. A vertex u is considered reachable from vertex v if and only if neither of them is infected, and the number of infected vertices on the path between them does not exceed M.

For each possible chosen vertex $s(1 \leq s \leq N)$, you must calculate the number of vertex pairs (u, v) such that $1 \leq u<v \leq N$ and u is reachable from v (and vice versa).

Input Format

The first line contains three integers: N, R and M.
The second line contains $N-1$ integers: $p[2], p[3], \ldots, p[N]$, the parents of the vertices $2,3, \ldots, N$, respectively.

Output Format

Print N lines with single integer each: s-th line should contain required number of pairs when the chosen vertex is s.

Example 1

Standard input	Standard output
1322	16
12343668210111	4
	15
	55
	66
	36
	66
	55
	66
	45
	55
	66
	66

The image above corresponds to $s=2$.
The reachable pairs are: $(1,13),(7,8),(7,9),(8,9)$.
This list doesn't include the pair $(1,2)$ since vertex 2 is infected. Similarly, the pair $(1,5)$ is absent since the path between 1 and 5 has three infected vertices (2,3 and 4).

Example 2

Standard input	Standard output
301	1
12	1
	1

Constraints

- $2 \leq N \leq 500000$
- $1 \leq p[i]<i$ (for each $2 \leq i \leq N$)
- $0 \leq R \leq N-1$
- $0 \leq M \leq 2 \times R+1$

Subtasks

1. (20 points) $N \leq 300$
2. (14 points) $R=0$
3. (15 points) $M=2 \times R+1$
4. (10 points) $M=2 \times R-1$
5. (16 points) $N \leq 5000$
6. (25 points) No additional constraints.
